Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

閉める
閉める
  • Netskopeが選ばれる理由 シェブロン

    ネットワークとセキュリティの連携方法を変える。

  • 導入企業 シェブロン

    Netskopeは、フォーチュン100社の30社以上を含む、世界中で3,400社以上の顧客にサービスを提供しています。

  • パートナー シェブロン

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。

ネットスコープが2024年Gartner®社のシングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご覧ください。

レポートを読む
顧客ビジョナリースポットライト

革新的な顧客が Netskope One プラットフォームを通じて、今日の変化するネットワークとセキュリティの状況をどのようにうまく乗り越えているかをご覧ください。

電子書籍を入手する
顧客ビジョナリースポットライト
Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

Netskope パートナーについて学ぶ
色々な若い専門家が集う笑顔のグループ
明日に向けたネットワーク

サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。

ホワイトペーパーはこちら
明日に向けたネットワーク
Netskope Cloud Exchange

Netskope Cloud Exchange (CE) は、セキュリティポスチャに対する投資を活用するための強力な統合ツールを提供します。

Cloud Exchangeについて学ぶ
Aerial view of a city
  • Security Service Edge(SSE) シェブロン

    高度なクラウド対応の脅威から保護し、あらゆるベクトルにわたってデータを保護

  • SD-WAN シェブロン

    すべてのリモートユーザー、デバイス、サイト、クラウドへ安全で高性能なアクセスを提供

  • Secure Access Service Edge シェブロン

    Netskope One SASE は、クラウドネイティブで完全に統合された単一ベンダーの SASE ソリューションを提供します。

未来のプラットフォームはNetskopeです

Security Service Edge (SSE)、 Cloud Access Security ブローカ (CASB)、 Cloud Firewall、 Next Generation Secure Web Gateway (SWG)、および Private Access for ZTNA a 13 にネイティブに組み込まれており、 Secure Access Service Edge (SASE) アーキテクチャへの旅ですべてのビジネスを支援します。

製品概要はこちら
Netskopeの動画
Next Gen SASE Branch はハイブリッドである:接続、保護、自動化

Netskope Next Gen SASE Branchは、コンテキストアウェアSASEファブリック、ゼロトラストハイブリッドセキュリティ、 SkopeAI-Powered Cloud Orchestrator を統合クラウド製品に統合し、ボーダレスエンタープライズ向けに完全に最新化されたブランチエクスペリエンスを実現します。

Next Gen SASE Branchの詳細はこちら
オープンスペースオフィスの様子
ダミーのためのSASEアーキテクチャ

SASE設計について網羅した電子書籍を無償でダウンロード

電子書籍を入手する
ダミーのためのSASEアーキテクチャ eBook
最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

NewEdgeの詳細
山腹のスイッチバックを通るライトアップされた高速道路
アプリケーションのアクセス制御、リアルタイムのユーザーコーチング、クラス最高のデータ保護により、生成型AIアプリケーションを安全に使用できるようにします。

生成AIの使用を保護する方法を学ぶ
ChatGPTと生成AIを安全に有効にする
SSEおよびSASE展開のためのゼロトラストソリューション

ゼロトラストについて学ぶ
大海原を走るボート
NetskopeがFedRAMPの高認証を達成

政府機関の変革を加速するには、Netskope GovCloud を選択してください。

Netskope GovCloud について学ぶ
Netskope GovCloud
  • リソース シェブロン

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ シェブロン

    Netskopeがセキュアアクセスサービスエッジ(SASE)を通じてセキュリティとネットワーキングの変革を実現する方法をご覧ください

  • イベント&ワークショップ シェブロン

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ シェブロン

    サイバーセキュリティ百科事典、知っておくべきすべてのこと

「セキュリティビジョナリー」ポッドキャスト

2025年の予測
今回の Security Visionaries では、Wondros の社長であり、Cybersecurity and Infrastructure Security Agency (CISA) の元首席補佐官である Kiersten Todt 氏が、2025 年以降の予測について語ります。

ポッドキャストを再生する Browse all podcasts
2025年の予測
最新のブログ

Netskopeがセキュアアクセスサービスエッジ(SASE)機能を通じてゼロトラストとSASEの旅をどのように実現できるかをお読みください。

ブログを読む
日の出と曇り空
SASE Week 2024 オンデマンド

SASEとゼロトラストの最新の進歩をナビゲートする方法を学び、これらのフレームワークがサイバーセキュリティとインフラストラクチャの課題に対処するためにどのように適応しているかを探ります

セッションの詳細
SASE Week 2024
SASEとは

クラウド優位の今日のビジネスモデルにおいて、ネットワークとセキュリティツールの今後の融合について学びます。

SASEについて学ぶ
  • 会社概要 シェブロン

    クラウド、データ、ネットワークセキュリティの課題に対して一歩先を行くサポートを提供

  • 採用情報 シェブロン

    Netskopeの3,000 +素晴らしいチームメンバーに参加して、業界をリードするクラウドネイティブセキュリティプラットフォームを構築してください。

  • カスタマーソリューション シェブロン

    お客様の成功のために、Netskopeはあらゆるステップを支援いたします。

  • トレーニングと認定 シェブロン

    Netskopeのトレーニングで、クラウドセキュリティのスキルを学ぶ

データセキュリティによる持続可能性のサポート

Netskope は、持続可能性における民間企業の役割についての認識を高めることを目的としたイニシアチブである「ビジョン2045」に参加できることを誇りに思っています。

詳しくはこちら
データセキュリティによる持続可能性のサポート
クラウドセキュリティの未来を形作る

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

チームに参加する
Netskopeで働く
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

カスタマーソリューションに移動
Netskopeプロフェッショナルサービス
Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

トレーニングと認定資格について学ぶ
働く若い専門家のグループ

GoodWill Ransomware? Or Just Another Jasmin Variant?

Jun 02 2022

Summary

In March 2022, researchers spotted a new ransomware family named GoodWill, with a new method to collect the ransom. Instead of requesting payment through crypto coins like other threats such as Night Sky or Hive, GoodWill requests that its victims help vulnerable people by following a sequence of steps, such as donating clothes, feeding less fortunate children, or providing financial assistance to hospital patients.

Part of GoodWill Ransomware Demands. Source: CloudSEK.

To prove these actions, the attacker requests the victim to record the good deeds and post the images/videos on Facebook, Instagram, WhatsApp or other social media.

But is GoodWill really a new ransomware family? After analyzing a few samples, Netskope Threat Labs found that this threat is 100% based on an open-source ransomware named Jasmin, which is a red team tool that can be used to simulate real ransomware attacks.

Aside from GoodWill, we also discovered other ransomware variants that were sourced from Jasmin. However, it is unclear if these files are weaponized samples, given the nature of the tool and the fact that we have not seen any evidence that attackers are using GoodWill or any of the variants we found in the wild. It is also possible that attackers could use this source code to easily create weaponized variants.

In this blog post, we will analyze the Jasmin ransomware tool and compare the code / operation with other samples found in the wild, including GoodWill.

Open-Source Project

Jasmin Ransomware is a tool that can be used by security teams to simulate ransomware attacks. It provides teams all the necessary infrastructure to conduct an attack, such as the source code to generate payloads, and front/back-end files for the web server.

Once running, Jasmin collects information about the environment and generates the key that will be used in the encryption process, sending this information to the C2 server. To decrypt the files, the victim must contact the attacker, who is in possession of the key.

Jasmin ransomware workflow.

The project contains the source code for the encryptor and the decryptor, which were created with C#. It also provides all the files related to the web panel, which uses PHP and MySQL.

Jasmin project folders.

Jasmin payloads can be generated through Visual Studio 2019 or later, and the developer suggests the usage of ngrok for port forwarding in the C2 server side.

Instructions to generate the payload.

Jasmin also provides a dashboard that the attacker can use to access information about infected devices and retrieve the decryption keys. The webpage is password-protected.

Jasmin dashboard login page.

When setup for the first time, Jasmin populates the database with dummy data. The dashboard provides details about infected devices, such as the machine name, username, IP address, date of infection, location, OS and the decryption key.

Jasmin ransomware dashboard.

Jasmin “Ransom Note”

Let’s take a look at what happens when a machine is infected by Jasmin ransomware. Within the “Web Panel” folder on GitHub, there’s a file named “alertmsg.zip”, which is downloaded by the ransomware upon execution. The ZIP file contains an offline web page that is displayed to the user after the infection.

“alertmsg.zip”

In the main page, there’s a message saying to the victim to not be worried, as the files are safe.

Jasmin’s main page of the ransom note.

The “What Happened to My Computer?” button leads to a description of Jasmin, stating that all user files were encrypted.

Jasmin description displayed by the ransom page.

In the following page, Jasmin ransom states that it’s not seeking money, but to perform good actions for less fortunate people. 

These good actions required by Jasmin are divided into three different activities. The first one asks the victim to donate new clothes or blankets.

First activity required by Jasmin.

The second activity requires Jasmin victims to bring five less fortunate children under 13 years old to a restaurant and let them order the food they want.

Second activity required by Jasmin.

The third and final activity requires victims to provide medications to hospital patients.

Third and final activity required by Jasmin.

For proof, the Jasmin ransomware requests evidence of all activities through photos, videos and audios that must be published on a social network, with the links to the posts provided via email.

How to prove the activities to Jasmin.

Since Jasmin is a red team tool, it’s possible that the developer created these ransom activities as a joke. Regardless of the real intent, these are the steps built into the Jasmin ransomware, which are being replicated by the variants, such as GoodWill.

Last page of Jasmin ransom note.

Jasmin Source Code

Looking at the source code we can find some variables that can be customized, such as the C2 server address and the URL where the compressed ransom note is stored, as well as the path in which this file will be saved.

Jasmin configuration.

At the main function, we have the following sequence:

  1. Generates the password used in the encryption process;
  2. Generates a unique system ID by combining the VolumeSerialNumber of all available instances;
  3. Checks if there’s internet connection by sending a ping to Google;
  4. Uploads information to the C2 server;
  5. Encrypt files in the device in multiple threads;
  6. Download and display the ransom note, which we demonstrated earlier.
Jasmin ransomware main function.

The password created for the encryption process is generated within the main function. Jasmin uses the RNGCryptoServiceProvider class to create a random string.

Jasmin password generation.

Despite the random password generated by this function, Jasmin overwrites the variable with a combination of two hardcoded values and the system ID.

Code reassigning the encryption password.

This means that you don’t need a password to decrypt the files, just the system ID, which can be retrieved by using the same function.

If there’s an internet connection, Jasmin uploads information about the infected device such as the computer name, username, the generated system ID, the OS name, and the time of the infection. Also, Jasmin retrieves the external IP address with ipfy API and geolocation info via external library “IpInfo”.

Data that is uploaded to the C2 server

Jasmin encrypts files using AES-256 in CBC mode through RijndaelManaged class within a function named “AES_Encrypt”, which receives the bytes to be encrypted and the password as parameters. Jasmin does not overwrite the file, but deletes and creates a new one with “.jasmin” as extension.

Process to encrypt files in Jasmin ransomware.

Jasmin also provides the source code for the decryptor, which retrieves encrypted files using the same random password generated previously, which is sent to the C2 server. 

Jasmin decryptor.

Also, it’s important to notice that Jasmin doesn’t have any mechanism to avoid recovery of the files via Shadow Copies or any other way.

GoodWill and Other Variants

When we compare compiled binaries, we can observe that GoodWill is not a new ransomware family, but a slightly modified version of Jasmin.

Comparison between Jasmin and GoodWill entry point.

Among the differences, we have “.gdwill” extension being used by encrypted files rather than “.jasmin”.

Different extensions across Jasmin and GoodWill.

The GoodWill ransomware contains an external address for C2, which was offline at the time of this analysis. The rest of the variables are exactly the same as the dummy Jasmin payload we generated for comparison.

Jasmin and GoodWill config variables.

GoodWill ransomware also changed the name in every single page on the ransom HTML.

Jasmin vs GoodWill ransom page.

Also, GoodWill contains the same flaw as Jasmin by overwriting the encryption password with a combination of two hardcoded values and the system ID. This means that the files can be decrypted without contacting the attacker, reinforcing the idea that this is not a real threat.

GoodWill uses a predictable password to encrypt files.

Through a retro-hunt on VirusTotal, we have identified at least 5 Jasmin ransomware variants aside from GoodWill, named Silver, Soviet (ssenc), Xlx, Grrr, and Zeus.

Jasmin ransomware variants.

Like GoodWill, these variants contain only minor modifications from the original Jasmin source code. One of the changes is the usage of base64 encoding in the malware strings in some variants, such as Silver.

Base64 encoded strings on Silver ransomware.

Also, some variants like Soviet fixed the password problem found in Jasmin, by using the random password for encryption.

Soviet ransomware using a random password for encryption.

At this point, it’s unclear if these samples were created to be used in real attacks or in threat simulation scenarios. All the hashes for these variants can be found in our GitHub repository.

HiddenTear Ransomware

We noticed that many anti-virus vendors are classifying Jasmin ransomware as HiddenTear.

VirusTotal classifications for Jasmin ransomware.

Like Jasmin, HiddenTear is a ransomware developed in C# and released on GitHub as a proof-of-concept in 2015. It was later used by threat actors in the wild, including by CARBON SPIDER.

Source code of HiddenTear ransomware available on GitHub.

Jasmin ransomware is likely being detected as HiddenTear because the developer reused some of its functions, like the one to encrypt files using AES.

Comparison between HiddenTear and Jasmin ransomware.

The only difference in this function is that Jasmin is using a random password in the “saltBytes” variable. In the image above, we can even observe the HiddenTear original variable commented in Jasmin’s code.

Conclusion

In this post, we demonstrated that GoodWill ransomware is just a rebranding of Jasmin open-source ransomware tool. Netskope Threat Labs also found more Jasmin ransomware variants in the wild, but it’s unclear if these files were created by threat actors or if they are simply payloads generated to test security controls, especially because most of the files are using ngrok for C2 communication. We also found code reuse between HiddenTear and Jasmin, which is likely the reason for inaccurate classifications from some anti-virus engines.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • ByteCode-MSIL.Ransomware.Jasmin
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

All the IOCs related to this campaign and a Yara rule can be found in our GitHub repository.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.

Stay informed!

Subscribe for the latest from the Netskope Blog